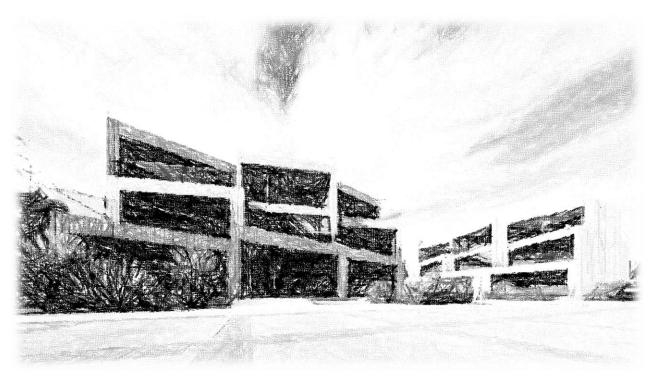


ERASMUS+ Strategic Partnerships For Higher Education

AUTHORS HIBI WOOD VIENNA PART 1

AUSTRIA AUSTRIA LATVIA LATVIA POLAND

CHRISTIAN BACKKNECHT NAEMI BRUSCH LASMA BEZDELIGA MARTYNAS GABALIS ROBERT ZAPAŁA


AUTHORS HIBI WOOD KRAKÓW PART 2

AUSTRIA
AUSTRIA
POLAND
LATVIA
FINLAND
POLAND

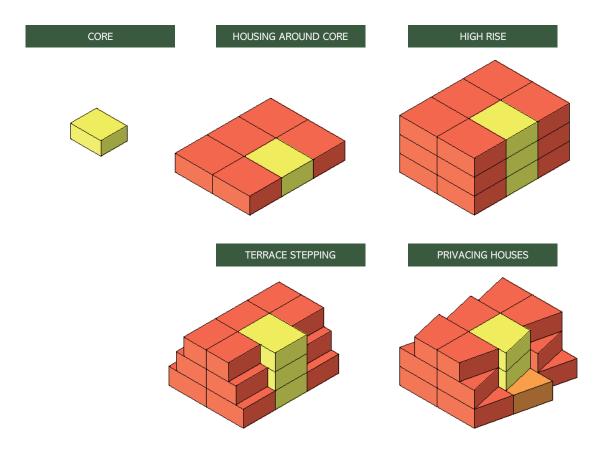
CHRISTIAN BACKKNECH NAEMI BRUSCH PAULINA MACIEJA ELVIRA ANTANE IIDA VAKKURI AMELIA ŚWIĘCICKA ROBERT ZAPAŁA

SUSTAINABLE, HIGH-PERFORMANCE BUILDING SOLUTIONS IN WOOD

2020-1-LV01-KA203-077513

Diagram

KLAIPĖDOS VALSTYBINĖ KOLEGIJA



HIBI WOOD VIENNA

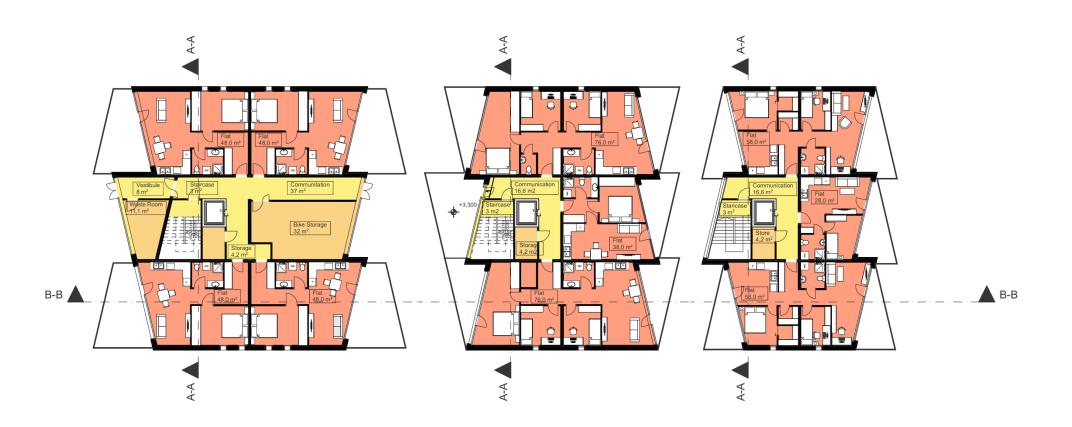
1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

HIBI WOOD KRAKÓW

5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

Floor Plans

KLAIPĖDOS VALSTYBINĖ KOLEGIJA



HIBI WOOD VIENNA

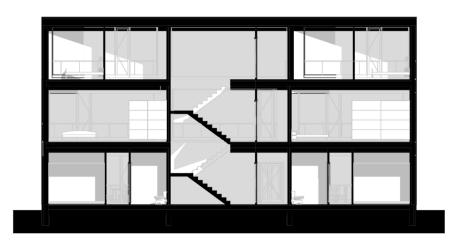
1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS

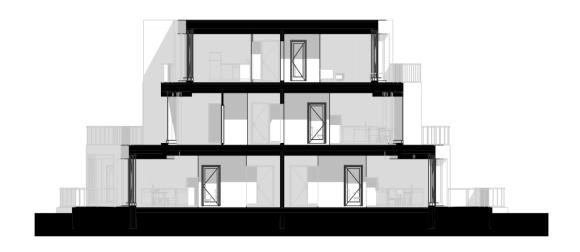
HIBI WOOD KRAKÓW

	HIBI WOOD KRAKOW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

Section A-A, B-B

KLAIPĖDOS VALSTYBINĖ KOLEGIJA




HIBI WOOD VIENNA

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

HIBI WOOD KRAKÓW

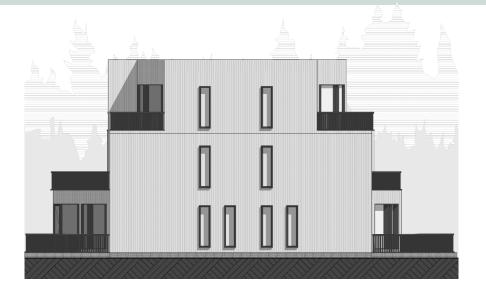
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS

21.08.2023

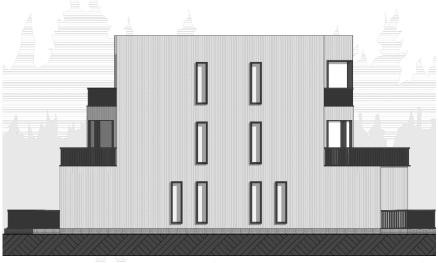
ELEVATIONS

KLAIPĖDOS VALSTYBINĖ KOLEGIJA

HIBI WOOD VIENNA


1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS

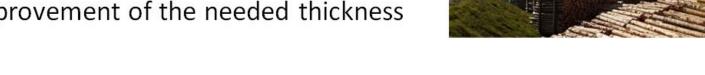
ELEVATIONS


HIBI WOOD KRAKÓW

5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS

PROJECT SCHEDULE

Sources:



What we want to improve

- More efficient use of timber
- -Interior walls in timber frame
- -Improvement of the needed thickness

- Less transportation costs
- Prefabrication just where it makes sense
- Choosing the best fabricator for our location

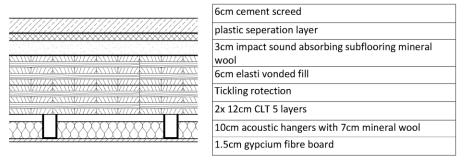
Storaenso fabric, Bad St. Leonhard ~140km from Stegersbach Ref.: storaenso.com

21.08.2023 Sources:

KLAIPĖDOS

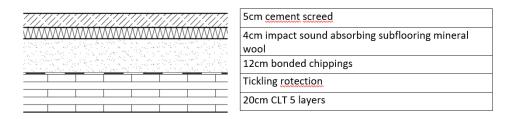
VALSTYBINĖ KOLEGIJA

HIBI WOOD VIENNA

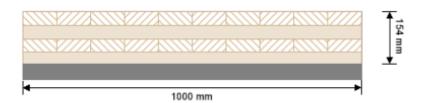

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

HIBI WOOD KRAKÓW

Ceilings


Vienna

• REI 60

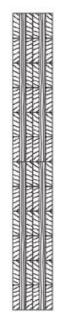

Cracow

• REI 60

• Rw > 77dB; Lnw <40dB

• Diffusion suitable

21.08.2023 Sources:



HIBI WOOD KRAKÓW

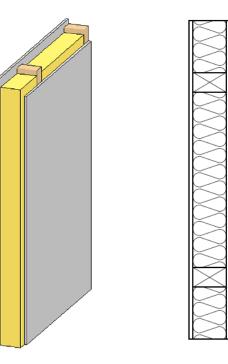
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

Interior walls

Vienna

2x 6cm CLT 3 layers

For joining modules


And stiffening

Sight quality

6cm CLT 3 layers for non load bearing walls

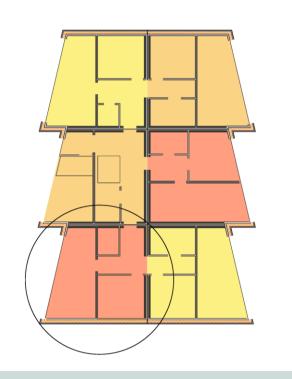
Sight quality

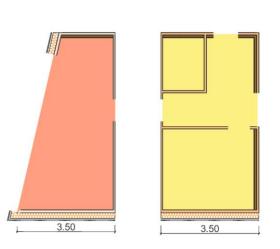
Cracow

10cm timber
frame
non load bearing,
no stiffening
needed

Sources:

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS


HIBI WOOD VIENNA


HIBI WOOD KRAKÓW

Level of Prefabrication

Vienna

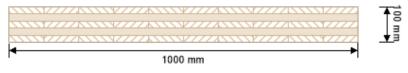
Cracow

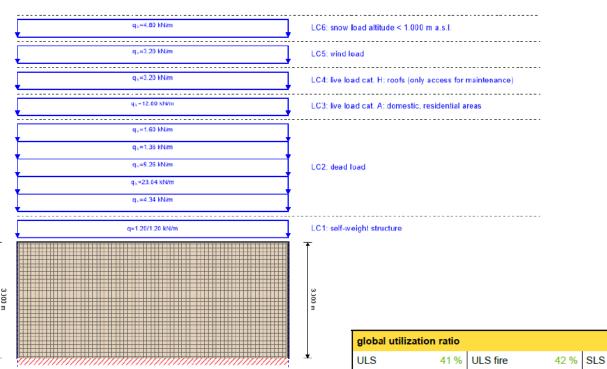
(high level)

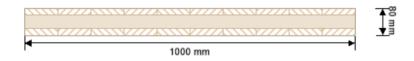
0 %



HIBI WOOD VIENNA


1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS


HIBI WOOD KRAKÓW

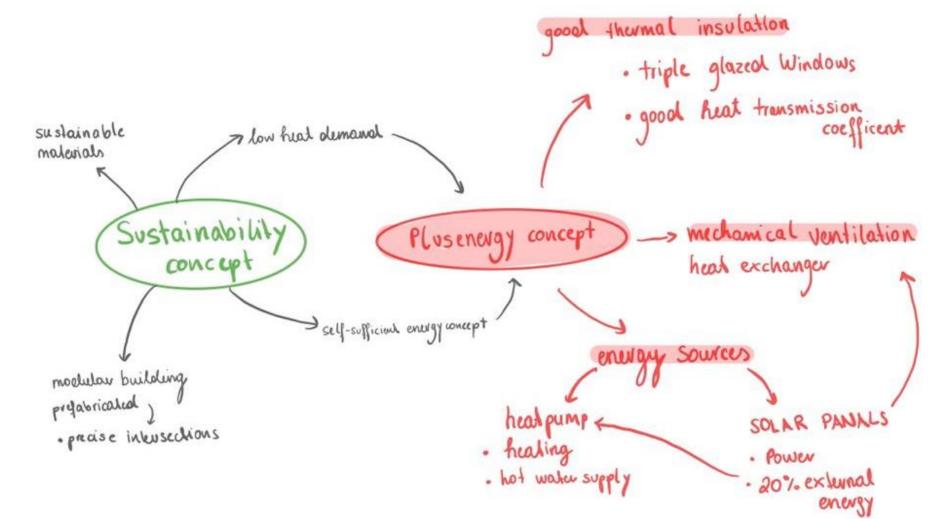

section: CLT 100 C5s

7.000 m

section: CLT 80 C3s

21.08.2023 Sources:

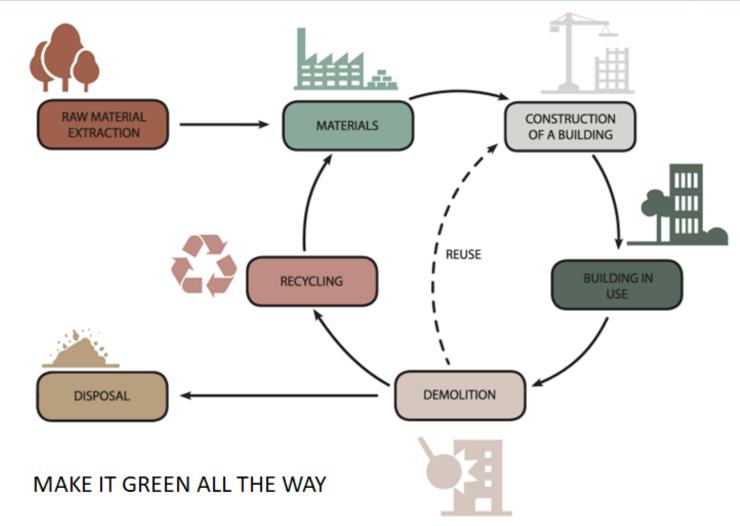
42 %



1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS

PROJECT SCHEDULE



1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

SUPPLY

HIBI WOOD VIENNA

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

LUDI WOOD KD AKÓW

	HIBI WOOD KRAKOW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

RAW MATERIAL EXTRACTION

FACADE -> LARCHES

- Selected Timber from EU certificated sustainable criteria (no tropical woods, eg. Wood from EU-Europe)
- criteria within the meaning of §1 of the Austrian Forestry Act are anchored by law. Only (includes Timber from Germany, Austria and Switzerland)

TIMBER:

CLT FACTORY 1h 40 min distance to the site

sustainably managed forests

As forests have numerous functions, wood harvesting and other types of use may lead to conflicts between different stakeholders.

Forests have to be managed sustainably in order to ensure that their functions (e.g. protection against avalanches and topsoil erosion, space for human recreation) can be preserved in the long run.

Sustainable forest management means that forest roads, machines, logging, reforestation and use of pesticides must be as ecologically sensible as possible. Wood should always come from safe sources, which means:

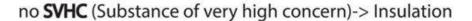
no illegal timber harvesting; no wood from high conservation value forests such as the natural forests of Siberia or European Russia; no wood from genetically modified trees.

BUILDING

21.08.2023 Sources:

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

HIBI WOOD KRAKÓW



reduce the danger for the environment

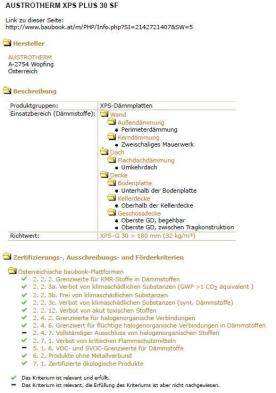
for indoor air quality

no toxic substance in the Building Materials

no **PVC** (Polyvinylchlorid)-> in flooring and wall covers)

Hexabromcyclododecan (HBCD) bromierte Diphenylether Tetrabrombisphenol A Chlorparaffine C10-13 – CAS85535-84-8 Phosphorsäureester

BUILDING C K COLLEGE


HIBI WOOD VIENNA

'	CONCERT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

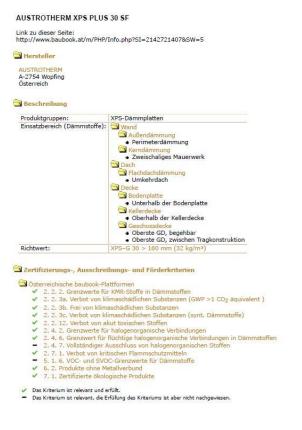
	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

FLATROOF

21.08.2023 Sources:

KLAIPĖDOS

VALSTYBINĖ **KOLEGIJA**


HIBI WOOD VIENNA

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

LUBLINGOD KRAKÓW

	HIBI WOOD KRAKOW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

FLOOR PANAL

21.08.2023 Sources:

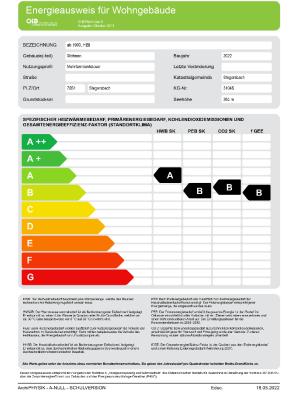
1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

CEILING

Airstop Diva + Dampfbremse

HIBI WOOD VIENNA


1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

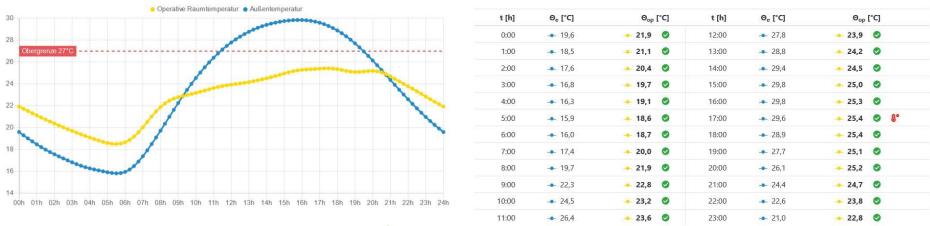
HIBI WOOD KBYKOM

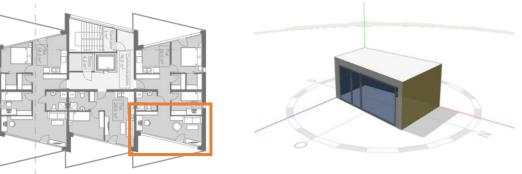
	HIBI WOOD KRAKOW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

BUILDING IN USE

OiB terminations	OIB-Richtlinic 6 Ausgabe Oktobe	r 2011				
GEBĀUDEKENNDATE	N					
Brutto-Grundfläche	801,47 m2	Klimaregion		S/S0	mittlerer U-Wert	0,563 Wh
Bezugs-Grundfläche	641,17 m2	Heiztage		213	d Bauweise	mittelschwer
Brutto-Volumen	2 188,01 m3	Heizgradtage		3477 K	d Art der Lüftung	Fensterlüftu
Gebäude-Hüllfläche	1 037,77 m2	Norm-Außentemp	eratur	-11,9 °	C Sommertauglichk	eit keine Angab
Kompaktheit (A/V)	0.47 1/m	Soll-Innentempera	tur	20 *	C LEK T-Wert	41
charakteristische Länge	2,11 m					
WÄRME- UND ENERG	IEBEDARF	Wohnen				
Referen		Standortklima conenbezogen	spezifiso		Anforderung	
	10 kWh/m2a	16 150 KVM-ia		kWh/mZa	44.95 kWhim7a	erkilt
WWWB		10 238 KWh/a	12,78	l kWhimža		
HTEB RH		-10 232 KWh/a	-12.73	kWhimza		
HTEB WW		5.316 KWhia	6,63	kWhinža		
HTEB		17 623 KWhia	21,99	KAthim?a		
HEB		21 929 KWh/a	27,38	kWhimZe		
HHSB		13 164 kWhia	16,43	kWhimza		
EEB		35 093 kWhia	43.79	kWhiniza	98,87 kWnem2a	crisiii
PEB		91 943 KWhia	114,73	kWhin?a		
PEB n.em.		75 449 KWhia	91,14	kWhimze		
PEB ern.		16 494 KWh/a	20,58	kWhimze		
CO 2		14 634 kg/a	18,26	i kg/m2a		
f GEE 0	. 88		0,93	i -		
fGEE 0	.88 -		0,90	1-		
ERSTELLT		5	stellerin		ArchiPHYSIK - www a-null	
	00.00.0000	_	stellerin iterschrift		ANGINETITOR - WWW.B-NUIL	uom
Ausstellungsdatum		U	- DOINGE			
Gültigkeitsdatum	00.00.0000					
					ngspecementer klimmen bei behalchliche nd der Lege himschillich über Freegiel	

Heat demand 23,10 kwh/m^2a

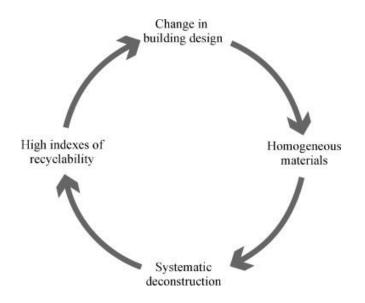

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS



BUILDING IN USE

Proof of no overheating in the summer-> without active cooling

exernal window shading natural ventilation in the night



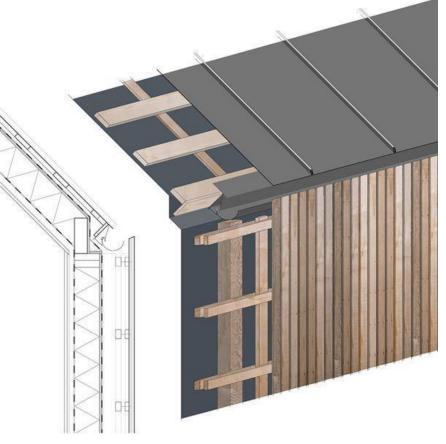
1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

Use high level of recycled content in the building ->

No toxic substances in the Building Materials

Easy to seperate structures (-> separation without losing quality)


HIBI WOOD VIENNA

HIBI WOOD KRAKÓW

BUILDING SERVICES AND FACADES

PROJECT SCHEDULE

Facade concept

21.08.2023

Sources:

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

HIBI WOOD KRAKÓW

5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

Facade concept

• -Colour:

Straw(creamy) yellow to light brown, weathering to a beautiful silvery-grey without treatment

- -Lifespan –
 30 to 50 years with right treatment;
 20-30 years untreated
- -Sustainable and non toxic
 Larch is currently being replanted
 and it is being harvested,
 making it a very sustainable choice.

21.08.2023

26

Sources: Timberulove

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

Fire resistance

Building codes for timber buildings in Austria

Table 1b: General requirements for the fire resistance of components

	Building classes (BC)	BC 1	BC 2	BC 3	BC 4	BC 5 ≤ 6	BC 5
	oad-bearing components re compartment-forming v		xception	of ceilings a	nd		
1.1	In the top floor	T	- R 30	R 30	R 30	R 60	R 60
1.2	In other floors above ground	R 30	R 30	R 60	R 60	R 90	R 90 and A2
1.3	In underground floors	R 60	R 60	R 90 and A2	R 90 and A2	R 90 and A2	R 90 and A2
2 P	artition walls (with the exc	eption of	walls of st	aircases)	•	•	
2.1	In the top floor		REI 30	REI 30	REI 60	REI 60	REI 60
2.1	in the top hoor		EI 30	EI 30	EI 60	EI 60	EI 60
2.2	In floors above ground	*****	REI 30 EI 30	REI 60 EI 60	REI 60 EI 60	REI 90 EI 90	REI 90 and A2 EI 90 and A2
2.3	In underground floors		REI 60 EI 60	REI 90 and A2 EI 90 and A2			
2.4	Between flats or business units in terraced houses		REI 60 EI 60	Not applicable	REI 60 EI 60	Not applicable	Not applicable

	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

21.08.2023

27

Sources:

HIBI WOOD VIENNA

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

HIBI WOOD KRAKÓW

5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
9	BUILDING COMPONENTS DETAILS

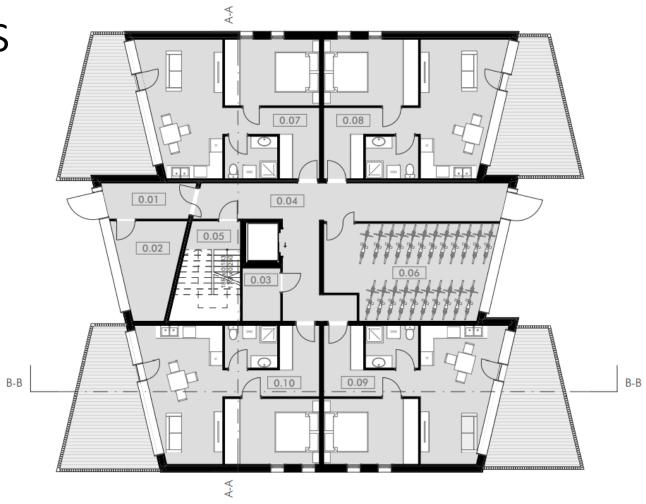
Non-reactive materials

- CLT wood
- Mineral wool
- Gypsum

21.08.2023

HIBI WOOD VIENNA

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS


HIBI WOOD KRAKÓW

5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AI

FIRE PROTECTION

PROJECT SCHEDULE

Escape ways

21.08.2023

Sources:

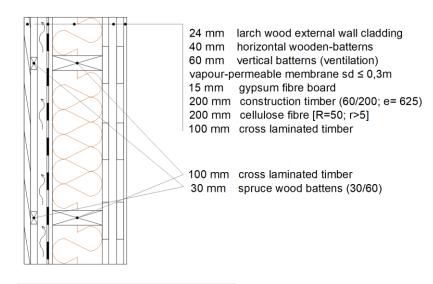
1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

Construction concept spruce

21.08.2023

Sources: Sprucerva 30

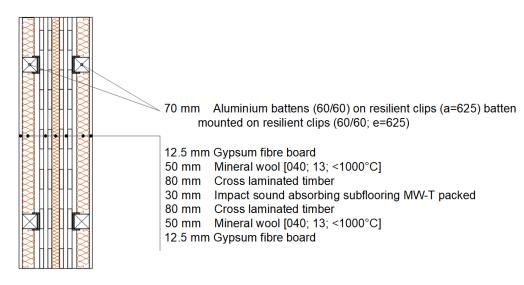


1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS

PROJECT SCHEDULE

External wall



Regulation demands: Fire REI 60

Saound 43 dB

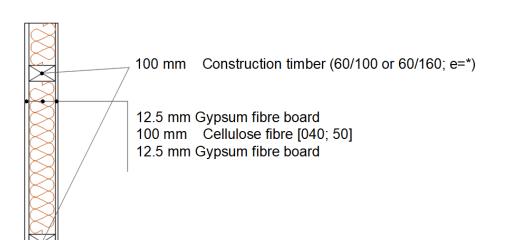
U-value 0,19 W/(m₂k)

Compartment wall

Regulation demands:

Fire REI 60 Saound 59 dB

U-value 0,21 W/(m₂k)



HIBI WOOD VIENNA

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

Interior wall

Regulation demands:

Fire REI 30 Saound 38 dB

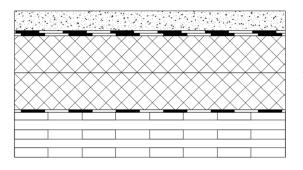
U-value $0,21 \text{ W/(m}_2\text{k})$

- 1 CONCEPT SCHEMATIC
 2 SITUATION PLAN
 3 FLOOR PLANS
 4 SECTIONS
 5 ELEVATIONS
- HIBI WOOD KRAKÓW

 5 STRUCTURAL CHANGES
 AND CALCULATIONS

 6 BUILDING SERVICES AND
 CALSULATIONS

 7 FACADES


 8 FIRE PROTECTION

 9 BUILDING COMPONENTS

 10 DETAILS

 11 PROJECT SCHEDULE

Flat roof


- 1. 50 mm Fill gravel
- 2. separation nonwoven [sd & le; 0,2m]
- 3. sealing sheet sd≥ 100m
- 4. 200 mm wood-fibre insulation board [0,045; R=160] (2*100)
- 5. sealing sheet e.g. bitumen
- 6. 180 mm cross laminated timber ≥ 125,0; at least 5-layers, top layer at least 27,5 mm)

Regulation demands:

Fire REI 30 Saound 50 dB

U-value $0,21 \text{ W/(m}_2\text{k})$

Ceiling

- 1. 50 mm Cement screed
- 2. 40 mm Impact sound absorbing subflooring MW-T [s'=6MN/m³]
- 3. 120 mm Bonded chippings
- 4. trickling protection
- 5. 200 mm Cross laminated timber BBS 5 layer

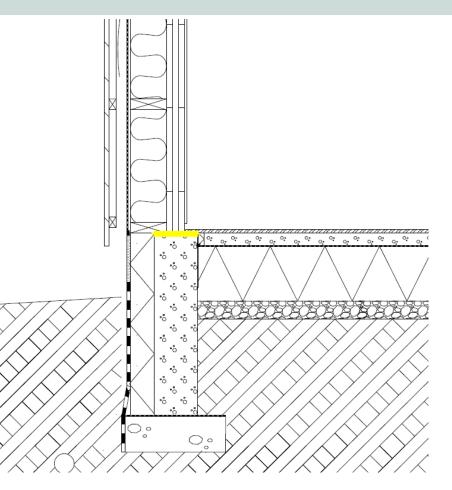
Regulation demands:

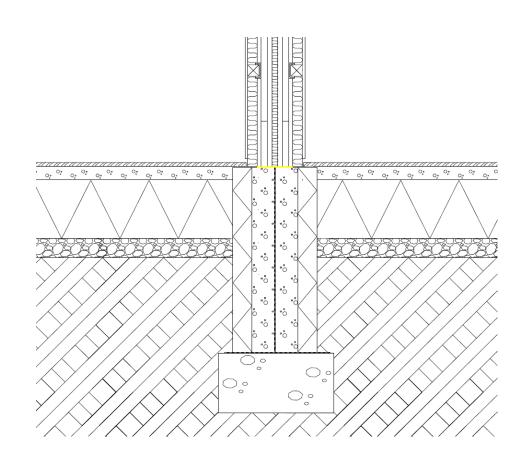
Fire REI 90 Saound 77 dB

U-value 0,37 W/(m₂k)

DETAIL OF FOUNDATION

KLAIPĖDOS VALSTYBINĖ KOLEGIJA




HIBI WOOD KRAKÓW

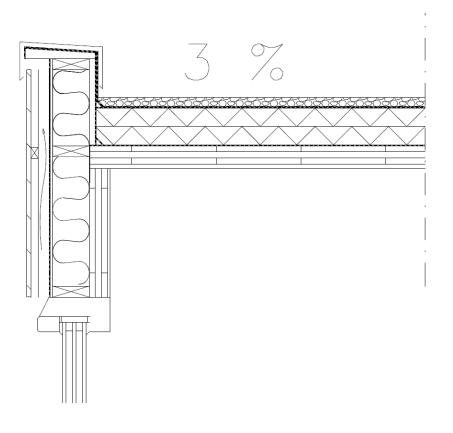
BUILDING SERVICES AND

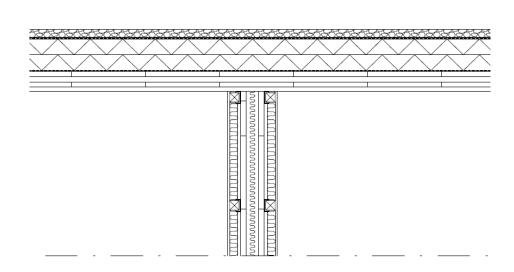
DETAILS

PROJECT SCHEDULE

DETAIL OF ROOF

KLAIPĖDOS VALSTYBINĖ KOLEGIJA



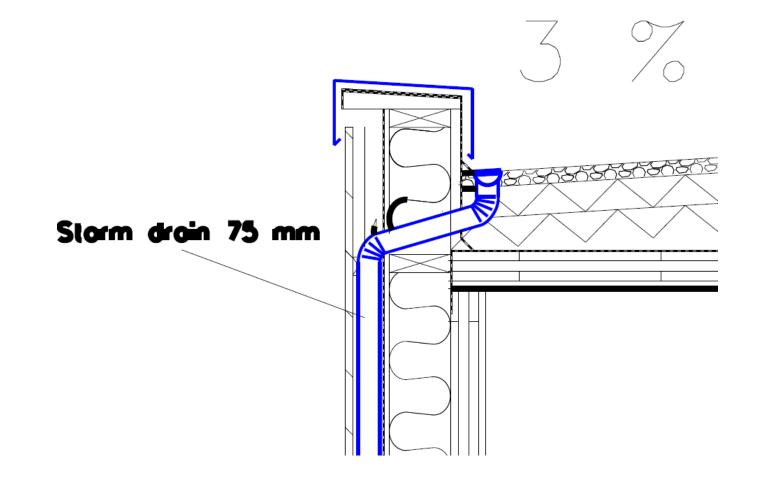


1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

DETAIL OF ROOF

KLAIPĖDOS VALSTYBINĖ KOLEGIJA

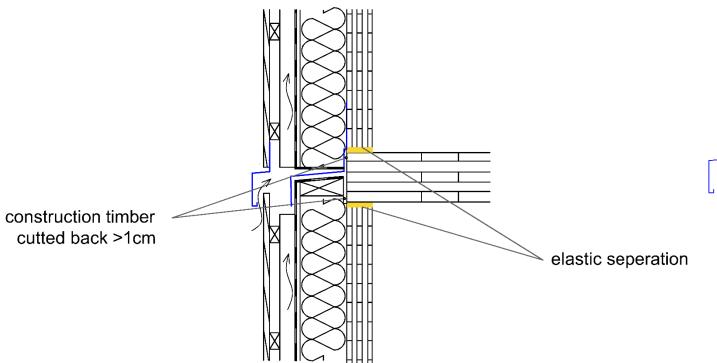


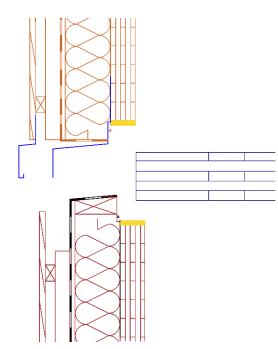
1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

DETAIL OF EXTERIOUR WALL AND CEILING

KLAIPĖDOS VALSTYBINĖ KOLEGIJA





1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

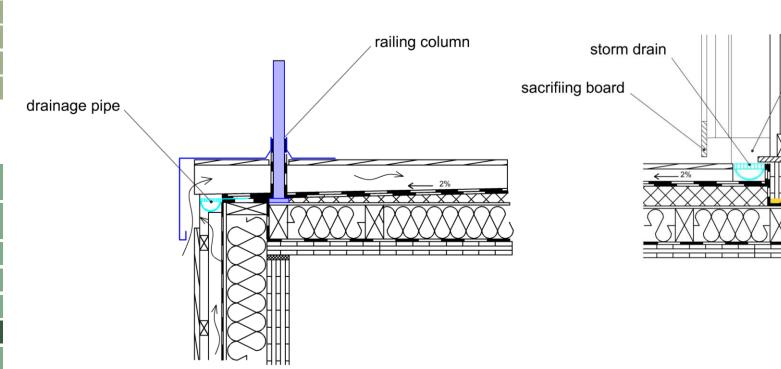
	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

DETAIL OF TERRACE

EPS insulation

elastic seperation

KLAIPĖDOS VALSTYBINĖ KOLEGIJA

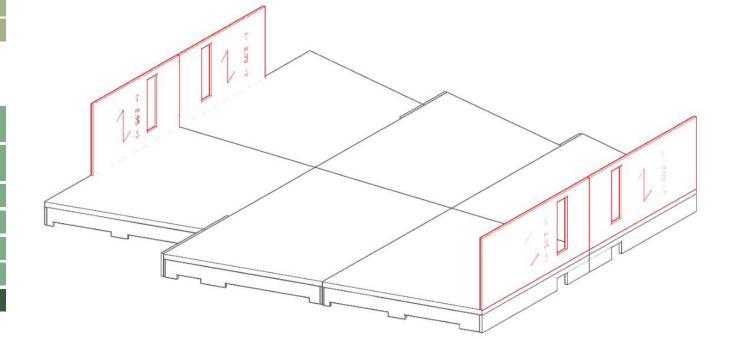


HIBI WOOD VIENNA

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

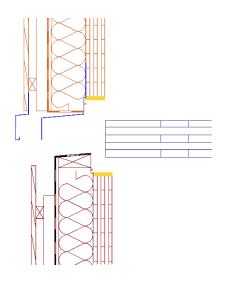
3	LLEVATIONS
	HIBI WOOD KRAKÓW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

21.08.2023 Sources:



HIBI WOOD VIENNA

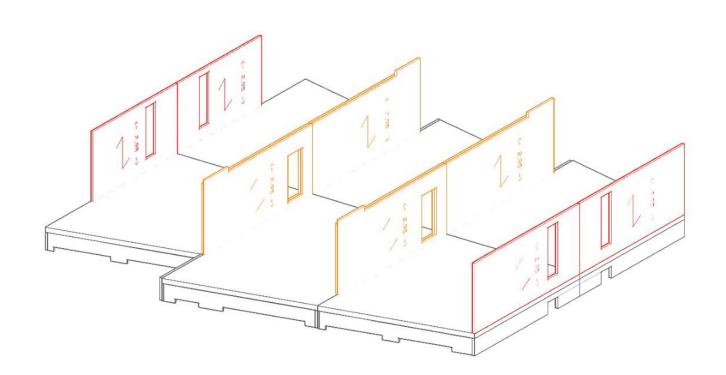
1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS


HIBI WOOD KRAKÓW

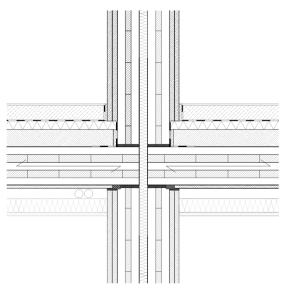
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDUJ E

Exteriour walls:

- Loadbearing
- Prefabricated facade



1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

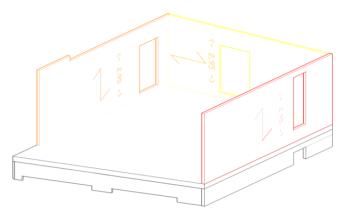

HIBI WOOD KRAKÓW

5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

Compartment walls:

Loadbearing

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

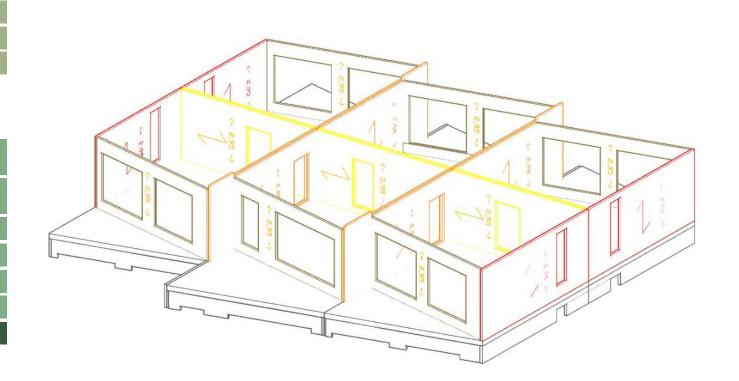

HIBI WOOD KRAKÓW

5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS

PROJECT SCHEDULE

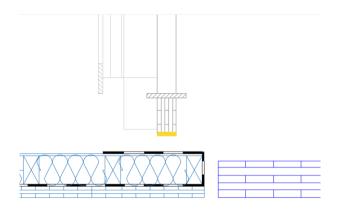
Compartment walls:

Stiffening


HIBI WOOD VIENNA

1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

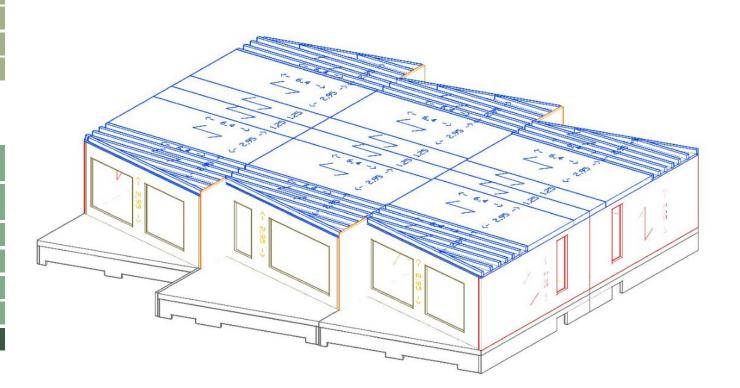
HIBI WOOD KRAKÓW


5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS

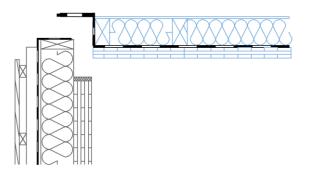
PROJECT SCHEDULE

Exteriour walls:

- Non loadbearing
- Prefabricated facade



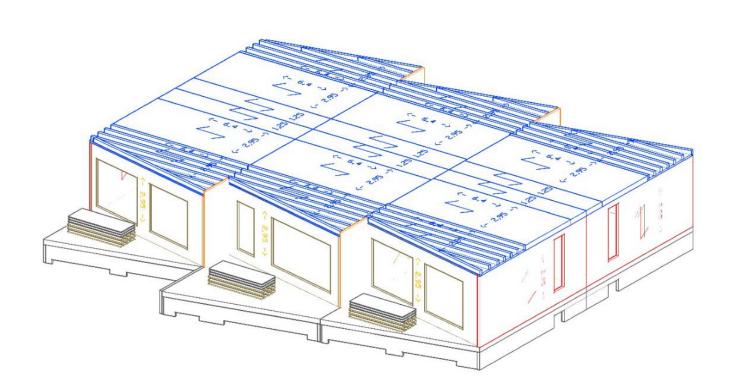
1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS


HIBI WOOD KRAKÓW

5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

Ceiling slabs:

- CLT 20cm or
- CLT 6cm+ GL32h 10/16cm



1	CONCEPT SCHEMATIC
2	SITUATION PLAN
3	FLOOR PLANS
4	SECTIONS
5	ELEVATIONS

HIBI WOOD KRAKÓW

	HIBI WOOD KRAKOW
5	STRUCTURAL CHANGES AND CALCULATIONS
6	BUILDING SERVICES AND CALSULATIONS
7	FACADES
8	FIRE PROTECTION
9	BUILDING COMPONENTS
10	DETAILS
11	PROJECT SCHEDULE

Interiour walls:

- Assembling after flooring
- Maximum flexibility
- Cutted in pieces
- Stored on balconys

(Rain protection until used)

Sources: